Comparison of Three Preprocessing Filters Efficiency in Virtual Screening: Identification of New Putative LXRβ Regulators As a Test Case
نویسندگان
چکیده
In silico screening methodologies are widely recognized as efficient approaches in early steps of drug discovery. However, in the virtual high-throughput screening (VHTS) context, where hit compounds are searched among millions of candidates, three-dimensional comparison techniques and knowledge discovery from databases should offer a better efficiency to finding novel drug leads than those of computationally expensive molecular dockings. Therefore, the present study aims at developing a filtering methodology to efficiently eliminate unsuitable compounds in VHTS process. Several filters are evaluated in this paper. The first two are structure-based and rely on either geometrical docking or pharmacophore depiction. The third filter is ligand-based and uses knowledge-based and fingerprint similarity techniques. These filtering methods were tested with the Liver X Receptor (LXR) as a target of therapeutic interest, as LXR is a key regulator in maintaining cholesterol homeostasis. The results show that the three considered filters are complementary so that their combination should generate consistent compound lists of potential hits.
منابع مشابه
Discovery of New Liver X Receptor Agonists by Pharmacophore Modeling and Shape-Based Virtual Screening
Agonists of liver X receptors (LXR) α and β are important regulators of cholesterol metabolism, but agonism of the LXRα subtype appears to cause hepatic lipogenesis, suggesting LXRβ-selective activators are attractive new lipid lowering drugs. In this work, pharmacophore modeling and shape-based virtual screening were combined to predict new LXRβ-selective ligands. Out of the 10 predicted compo...
متن کاملMulti-Layer Identification of Highly-Potent ABCA1 Up-Regulators Targeting LXRβ Using Multiple QSAR Modeling, Structural Similarity Analysis, and Molecular Docking.
In this study, in silico approaches, including multiple QSAR modeling, structural similarity analysis, and molecular docking, were applied to develop QSAR classification models as a fast screening tool for identifying highly-potent ABCA1 up-regulators targeting LXRβ based on a series of new flavonoids. Initially, four modeling approaches, including linear discriminant analysis, support vector m...
متن کاملAssessment of "drug-likeness" of a small library of natural products using chemoinformatics
Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...
متن کاملAssessment of "drug-likeness" of a small library of natural products using chemoinformatics
Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical information and modeling
دوره 50 5 شماره
صفحات -
تاریخ انتشار 2010